S Trent Seager
Senior Forest Scientist, Sustainable Northwest

PhD, Forest Ecology (2017)
MSc, Forestry & Wildlife (2010)
Oregon State University

tseager@sustainablenorthwest.org
1. Collaboratives and Social Values

2. Science Engagement

3. Collaborative use of Science in Social License (ZOA)

4. Collaboratives and Scientists
In the spirit of collaboration, recognize the context…

- Federal policies and legal framework
- decision making authority of the Forest Service
- court rulings and shifting legal landscape
Role of science in planning:

• use the **best available scientific information** to inform the planning process

• determine what is the most accurate, reliable, and relevant to the issues being considered

• document how the **best available scientific information** was used to inform the assessment, the plan
Social values can be diverse:
Social values can be diverse:

Those can affect:

1. reasons to be at the table
2. desired future conditions
3. management direction
4. discussions and honest brokering

Should not affect collaborative’s view of the ‘best available science’
Science & Collaboratives

Science engagement with a Collaborative

1. Informs the conversations
2. Helps with discussion/decision space
3. May inform desired future conditions
4. May inform management direction

Should **not** be used as a weapon to shut down or ‘win’ against other social values
Science engagement with a Collaborative

- Guest speakers and visiting scientists
- Neutral or can help inform the conversation
- Not giving answers or deciding debates
- Dueling science can be engaged
- But not dueling scientists!
Scientists presenting to Blue Mtns Forest Partners on woodpeckers & harvest in post-fire stands
(photo: Trent Seager)
Scientists presenting to South Gifford Pinchot Collaborative on early seral field trip (photo: SGPC)

Scientists presenting with the Klamath Tribes to the Forest Service on a lodgepole pine field trip
(photo: Trent Seager)
RIPARIAN RESTORATION
ZONES of AGREEMENT

October 2017
Blue Mountains Forest Partners

Zones of Agreement for the restoration and management of riparian areas on the Malheur National Forest prepared by the Blue Mountains Forest Partners.
Aspen Restoration and Social Agreements

An Introductory Guide for Forest Collaboratives in Central and Eastern Oregon

June 2015
Section 4: Science and Ecology of Quaking Aspen
Section 4: Science and Ecolo Quaking Aspel

Drivers and Suppressors of Aspen Regeneration and Growth

Aspen sprouting (root suckering) can be initiated by many complex interactions with the environment and the parent tree. Different drivers may be occurring in different stands depending on the limiting factors.

A review of Oregon aspen studies found the most successful driver of aspen in Oregon has been (1) removal of competing conifers and (2) release from herbivory (Seager et al. 2013a, Table 1.0). While the science gives support and specific details for restoration, most land managers have been practicing this 1-2 approach for decades (Shirley and Ericson 2001, Strong et al. 2010, Swanson et al. 2010). Since conifer removal represents a release of moisture, light, and nutrients all at one time, it is challenging to know which one had the greatest effect. Additionally, it is important to remember that aspen growth and survival may be driven by genetics (Lindroth and St. Clair 2013). Here we provide a list of drivers and suppressors of aspen along with a brief explanation and scientific context.

Moisture – the deep soils in some aspen stands can hold snowmelt moisture into the summer months. This allows increased sprouting and overstory growth. By contrast, drier parts of the stand or stands with more shallow soils will face moisture limitation, which can be exacerbated when competing with encroaching conifers. Aspen need moisture late into the growing season (August), and can be limited in growth and sprouting. Release of moisture by encroaching conifers has been shown to increase aspen sprout density and persistence of overstory (Shirley and Ericson 2001, Jones et al. 2005, Swanson et al. 2010, Seager et al. 2013a). Normal and high precipitation years are not as much a concern as periodic or multi-year droughts. Restoration planning should include aspen moisture needs during dry years.
Drivers and Suppressors of Aspen Regeneration and Growth

Aspen sprouting (root suckering) can be initiated by many complex interactions with the environment and the parent tree. Different drivers may be occurring in different stands depending on the limiting factors.

A review of Oregon aspen studies found the most successful driver of aspen in Oregon has been (1) removal of competing conifers and (2) release from herbivory (Seager et al. 2013a, Table 1.0). While the science gives support and specific details for restoration, most land managers have been practicing this 1-2 approach for decades (Shirley and Ericson 2001, Strong et al. 2010, Swanson et al. 2010). Since conifer removal represents a release of moisture, light, and nutrients all at one time, it is challenging to know which one had the greatest effect. Additionally, it is important to remember that aspen growth and survival may be driven by genetics (Lindroth and St. Clair 2013). Here we provide a list of drivers and suppressors of aspen along with a brief explanation and scientific context.

Moisture – the deep soils in some aspen stands can hold snowmelt moisture into the summer months. This allows increased sprouting and overstory growth. By contrast, drier parts of the stand or stands with more shallow soils will face moisture limitation, which can be exacerbated when competing with encroaching conifers. Aspen need moisture late into the growing season (August), and can be limited in growth and sprouting. Release of moisture by encroaching conifers has been shown to increase aspen sprout density and persistence of overstory (Shirley and Ericson 2001, Jones et al. 2005, Swanson et al. 2010, Seager et al. 2013a). Normal and high precipitation years are not as much of a concern as periodic or multi-year droughts. Restoration planning should include aspen moisture needs during dry years.
How do collaboratives look at forests and trees?
How do collaboratives look at forests and trees?

How do scientists look at forests and trees?
Questions?