Can biochar link forest restoration with commercial agriculture?

David C. Smith
Oregon State University, USA

Kristin Trippe
USDA, USA

Follow this and additional works at: http://dc.engconfintl.org/biochar

Part of the [Engineering Commons](http://dc.engconfintl.org/biochar)

Recommended Citation

http://dc.engconfintl.org/biochar/26

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biochar: Production, Characterization and Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.
Catastrophic fire threatens Oregon’s forests

- 4 million ha. are at high risk of wildfire in Oregon

- Most of the risk is due to decades of fire suppression and a lack of funds to support fuel reduction treatments

- Limited demand for forest harvest residues restricts the ability of foresters to fund restoration projects.
Drought threatens Oregon’s crops

- In 2015 drought resulted in over >$1.2 billion in crop losses
- Biochar has the potential to improve water availability in agricultural soils, but limited supplies means costs are high.
- Does a forest-origin biochar strategy pair these reciprocal needs of forest restoration and agricultural productivity?
Does a forest-to-farm biochar paradigm pair the needs of forest restoration and agriculture?
Char Properties

Chemical Characteristics

<table>
<thead>
<tr>
<th>Source</th>
<th>pH</th>
<th>cmol-C/kg</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>8.23</td>
<td>7.34</td>
<td>0.25</td>
</tr>
<tr>
<td>Thermal</td>
<td>9.34</td>
<td>6.05</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Proximate

<table>
<thead>
<tr>
<th>Volatile</th>
<th>Fixed C</th>
<th>Ash</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microwave</td>
<td>13</td>
<td>82</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>14</td>
<td>73</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ultimate

<table>
<thead>
<tr>
<th>C</th>
<th>H</th>
<th>N</th>
<th>O</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>2</td>
<td>0.5</td>
<td>5</td>
<td>0.089</td>
</tr>
<tr>
<td>83</td>
<td>2</td>
<td>0.5</td>
<td>5</td>
<td><0.005</td>
</tr>
</tbody>
</table>

VOCs

<table>
<thead>
<tr>
<th>Acetone</th>
<th>2-Butanone</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>m,p-Xylenes</th>
<th>o-Xylene</th>
<th>4-Isopropyltoluene</th>
<th>Naphthalene</th>
<th>Semi-volatiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg</td>
</tr>
<tr>
<td>Microwave</td>
<td>62</td>
<td>21</td>
<td>8.8</td>
<td>11</td>
<td>2</td>
<td>4.4</td>
<td>2.6</td>
<td>5.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Thermal</td>
<td>38</td>
<td>BMDL</td>
<td>2.6</td>
<td>1.8</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
<td>BMDL</td>
</tr>
</tbody>
</table>
Does a forest-to-farm biochar paradigm pair the needs of forest restoration and agriculture?
Klamath Basin of Oregon: where irrigated cropping systems, water scarcity, and high fire-hazard forests share the same landscape
BIOCHAR PRODUCTION PROCESS

50,000 BDT of forest restoration logs / year

Scenario 1
Biochar Production
18,000 tons/year

Scenario 2
Heat Recovery

Scenario 3
Electricity generation

Scenario 4
Liquid Recovery

Chipping
Drying
Milling

Microwave Pyrolysis

Thermal Pyrolysis

Klamath Falls
Yreka
Preliminary Cost Estimates

Preliminary Capital Costs

Preliminary Biochar Production Cost

![Graph showing cost estimates for different processes and locations.](image-url)
Critical Economic Factors

- **Plant location**
 - Influences delivered log costs

- **Electricity rates**
 - Higher in California than Oregon
 - Higher usage for microwave technology

- **Plant Complexity**
 - Recovery of energy and condensable liquids adds capital and operating costs

- **Seasonality**
 - Influences raw material and finished product inventory
 - Log deliveries limited to summer months
 - Product sales limited to spring and fall months
 - Plant operates year round to maximize asset utilization
Summary

- Biochar-based products utilize low-value biomass from forest restoration projects. Simultaneously, biochar can:
 - Prolong the storage of soil water
 - Sequester carbon in soils
 - Improve plant productivity
- Our economic analysis determined that:
 - Microwave pyrolysis is more costly than thermal pyrolysis
 - Electrical generation from this process adds a significant cost
- Further analyses will determine if these extra costs can be offset.
Acknowledgments

Economic Evaluation of a Forest-to-Farm Biochar Paradigm

David Smith
John Sessions
Kristin Trippe
Claire Phillips
John Campbell
John Bailey

Will Holloman
Joshua Petitmermet
Jeremy Fried
Dan Leavell
Viola Manning
Stephanie Chiu

Collaborators: Karr Group; BSEI Inc.; Green Diamond, Miller Timber Services

United States Department of Agriculture
Agricultural Research Service

Oregon State University
College of Forestry
• A shift level productivity study using steep slope harvesting technology was used to develop a model of tethered harvest.

• Used decision support models to optimize treatments and transport from forest to plant.

• The cost of tethered machines on tethered operations (TT) and untethered operations (TU), and the cost of untethered machines on untethered operations (UT) were estimated.

<table>
<thead>
<tr>
<th></th>
<th>No Firewatch</th>
<th>With Firewatch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost per green ton</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>$26.84</td>
<td>$27.04</td>
</tr>
<tr>
<td>TU</td>
<td>$23.63</td>
<td>$23.80</td>
</tr>
<tr>
<td>UT</td>
<td>$21.38</td>
<td>$21.55</td>
</tr>
</tbody>
</table>
Biochar Plant Design Assumptions

• Log supply:
 • 50,000 bdt/year
 • Low-grade logs from restoration treatments on National Forests

• Plant Location
 • Existing wood processing sites in Oregon and California

• Primary Technology
 • Thermal and Microwave pyrolysis reactors from commercial suppliers

• Other Technology
 • Size reduction and material handling systems from commercial suppliers