Sediment Transport Prototypes

Novel Methods to Disconnect Forest Roads from Streams

Erica Kemp
M.S. Water Resources Engineering
Water Resources Graduate Program
Oregon State University | Department of Forest Engineering, Resources, and Management

Ben Leshchinsky
Assistant Professor
Geotechnical Engineering

December 3rd, 2015
Sediment Originating from Unpaved Forest Roads

Why is it important?

Sediment from forest roads is a concern for aquatic habitats, regulated by EPA

Endangered Species Act

Threatened salmonid species in Willamette and Lower Columbia Basins (NMFS 2015)

• Chinook Salmon
• Chum Salmon
• Coho Salmon
• Steelhead
Research Objective

For a small, field scale, test track with sediment control treatments

Observe and Quantify

1) Sediment transport leaving surface aggregate
2) Physics of sediment generation in surface aggregate
3) Treatment efficacy – benefit, service life, construction

During wet-weather hauling conditions
Hypotheses

- Filtration devices will provide a sediment sequestration benefit.
- Geogrid reinforcement will improve aggregate performance (reduce rutting).
Dunn Research Forest

Reconstructed 120 ft section of road

- 6 treatments
- 12 ft x 20 ft sections
- Insloped towards ditch
- 2 aggregate varieties
Runoff Collection Trench

- **Direction of Truck Traffic**
- **Simulated Rainfall**
- **Flexible PVC water bar with buried wood support**
- **Impermeable channel liner to provide confinement**
- **12” layer of aggregate, unbound at road surface**
- **Geogrid reinforcement beneath channel liner (Geo-treatments only)**
- **Runoff collected for laboratory analysis**
Methods

Field Testing

Runoff Collection Flume

ISCO Pump Sampler

Sprinklers ~ 0.60 in/hr
Analytical Methods

- Turbidity
- Suspended Solids
- Screening/Sieving
- Data Logger
- Permeability
- Rutting
Turbidity and Suspended Solids Concentration

Turbidity
- ISCO pump samplers
- Turbidimeter
- Drying ovens

Sample Stats
- 220,000 NTU
- 160,000 mg/L

Suspended Solids
Aggregate Degradation

Methods

- Mechanical Screen
- Wet Sieve

Table: Pre-Test vs. Post-Test

<table>
<thead>
<tr>
<th>Size</th>
<th>Pre-Test</th>
<th>Post-Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>d > 2"</td>
<td>d > 2"</td>
<td></td>
</tr>
<tr>
<td>2"</td>
<td>2"</td>
<td></td>
</tr>
<tr>
<td>1 1/2"</td>
<td>1 1/2"</td>
<td></td>
</tr>
<tr>
<td>1"</td>
<td>1"</td>
<td></td>
</tr>
<tr>
<td>1/2"</td>
<td>1/2"</td>
<td></td>
</tr>
<tr>
<td>3/8"</td>
<td>3/8"</td>
<td></td>
</tr>
<tr>
<td>1/4"</td>
<td>1/4"</td>
<td></td>
</tr>
<tr>
<td>No. 4</td>
<td>No. 4</td>
<td></td>
</tr>
<tr>
<td>No. 10</td>
<td>No. 10</td>
<td></td>
</tr>
<tr>
<td>No. 40</td>
<td>No. 40</td>
<td></td>
</tr>
<tr>
<td>No. 100</td>
<td>No. 100</td>
<td></td>
</tr>
<tr>
<td>No. 200</td>
<td>No. 200</td>
<td></td>
</tr>
</tbody>
</table>

Modified from Coop et al. 2004
Subgrade Pressure

WG* – well-graded
PG* – poorly graded
**C – Control
**B – Biomass
**G – Geotextile

Data Logger

Truck 1
Truck 2

WG* – well-graded
PG* – poorly graded
**C – Control
**B – Biomass
**G – Geotextile

PGC PGB PGG
WGG WGB WGC

Photo: Ben Leshchinsky
Test Track After 600 Truck Passes

Photo: Ben Leshchinsky
Turbidity and Suspended Solids Concentration (SSC)
Turbidity and SSC Time Series

Turbidity

- **Well-Graded Aggregate**
 - Control
 - Geotextile

- **Poorly-Graded Aggregate**

Suspended Solids Concentration

- **Well-Graded Aggregate**

- **Poorly-Graded Aggregate**
Permeameter Testing

<table>
<thead>
<tr>
<th>Filtration Treatment</th>
<th>Filter Sand Only</th>
<th>Filter Sand and Geotextile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Influent treatment</td>
<td>2 % SSC</td>
<td>2 % SSC</td>
</tr>
<tr>
<td>Influent turbidity (NTU)</td>
<td>6,600</td>
<td>6,600</td>
</tr>
<tr>
<td>Max. effluent turbidity (NTU)</td>
<td>2,200</td>
<td>1,200</td>
</tr>
<tr>
<td>Min. turbidity reduction</td>
<td>67 %</td>
<td>82 %</td>
</tr>
<tr>
<td>Time to peak concentration (min)</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

Geotextile sequestered sediment but did not clog system.
Permeability Testing

What does a geotextile cost

Fabric $1.25 per sq. yrd
Geogrid $1.50 per sq yrd

Results

Conclusion
Aggregate Degradation

Aggregate degradation is a function of truck traffic.
Rutting – Inside Wheel Track

Results

48 Passes

- WG
- WGG
- PGG
- PG

100 Passes

200 Passes

300 Passes
Subgrade Pressure

Geotextile reinforcement \equiv Lower subgrade pressure
Results

Sediment Delivery

Sediment lost per road section by mass (mg) and by percent of available moveable material.

<table>
<thead>
<tr>
<th>Passes</th>
<th>WGC1</th>
<th>WGC2</th>
<th>WGG</th>
<th>PGG</th>
<th>PGC2</th>
<th>PGC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>406,563</td>
<td>618,534</td>
<td>727,012</td>
<td>454,275</td>
<td>881,358</td>
<td>784,976</td>
</tr>
<tr>
<td>300</td>
<td>1,246,993</td>
<td>4,530,937</td>
<td>3,301,831</td>
<td>3,476,684</td>
<td>3,945,009</td>
<td>4,214,700</td>
</tr>
<tr>
<td>600</td>
<td>4,265,394</td>
<td>10,996,594</td>
<td>7,031,671</td>
<td>N/A</td>
<td>7,233,863</td>
<td>7,313,456</td>
</tr>
</tbody>
</table>

- **100 Passes**: 406,563, 618,534, 727,012, 454,275, 881,358, 784,976
- **300 Passes**: 1,246,993, 4,530,937, 3,301,831, 3,476,684, 3,945,009, 4,214,700
- **600 Passes**: 4,265,394, 10,996,594, 7,031,671, N/A, 7,233,863, 7,313,456

Graphs

- **WGC1, WGC2, WGG**
 - 100 Passes: 0%, 1%, 2%
 - 300 Passes: 1%, 1%, 1%
 - 600 Passes: 1%, 1%, 1%

- **PGC1, PGC2, PGG**
 - 100 Passes: 0%, 0%, 0%
 - 300 Passes: 0%, 0%, 0%
 - 600 Passes: 0%, 0%, 0%
Findings – Sediment Transport

- Sand filter berm system:
 - Can provide a > 70% reduction in turbidity under appropriate service conditions (no road failure)
 - Recovered to base turbidity within 20 minutes
 - Can extend time to peak concentration
 - Poorly-graded rock transports a greater percentage of available moveable material
Findings – Sediment Generation

• Geogrid reinforcement:
 • Decreased rutting for well-graded rock
 • Reduced relative breakage in poorly-graded rock
• Lower subgrade pressure for both aggregate varieties
• Aggregate degraded in proportion to truck traffic
Application

- Log truck traffic roads
 - Reduce peak turbidities and SSCs from traffic
 - Extend time to maximum concentration
- Non-roadside installation
 - In-ditch construction
- Road-stream crossings
Filter Berm Specification

- Geotextile AOS: 0.2 mm (No. 80 sieve)
- Ensure adequate anchoring
- Ensure anchoring is flush with native subgrade
- Min. height of 6”
- Min. 3” taller than adjacent prism
- Replace when berm is visibly punctured or failing
Conclusion

Outputs

• MS Degree in Water Resources Engineering
 • Two poster presentations (won award from WFGRS)
 • Two oral presentations (won award from WRS)
• Undergraduate mentorship
• Manuscript under review
• Performed research in College Forests
 • Site used for teaching and outreach field trips
Questions?

References

